Translational Research

Although most of the studies now occurring in the In Vivo Cellular and Molecular Imaging Centers (ICMICs) are focused on basic animal research, investigators aren't wasting any time in moving the power of in vivo molecular imaging to human patients.

Written byA. J. S. Rayl
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Although most of the studies now occurring in the In Vivo Cellular and Molecular Imaging Centers (ICMICs) are focused on basic animal research, investigators aren't wasting any time in moving the power of in vivo molecular imaging to human patients under grants separate from the ICMIC study.

With technical improvements over the last several years, molecular imaging--positron emission tomography (PET) in particular--now has the capacity to begin to answer important unknowns in gene therapy trials, such as whether the transgene gets to the tumor site and whether it expresses and for how long it expresses.1 By its very nature, PET has the capacity to move seamlessly into clinical use. "One of the nice things about PET is that the probes are used in near-'mass-less' quantities--meaning they don't alter the system at all --so we can and do the same types of studies in patients as in mice, and it's very ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH