Uniparental disomy in ES cells

Homozygous mutant cells can be generated from embryonic stem (ES) cells with a single insertion of a drug-resistance marker by increasing the concentration of the selection drug. In the March Nature Genetics, Lefebvre et al. report analysis of the mechanism governing this loss of heterozygosity (LOH) (Nature Genetics 2001, 27:257-258). They used an ES cell line resulting from a cross between two different inbred mouse 129 substrains which could be distinguished by single sequence-length polymorp

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Homozygous mutant cells can be generated from embryonic stem (ES) cells with a single insertion of a drug-resistance marker by increasing the concentration of the selection drug. In the March Nature Genetics, Lefebvre et al. report analysis of the mechanism governing this loss of heterozygosity (LOH) (Nature Genetics 2001, 27:257-258). They used an ES cell line resulting from a cross between two different inbred mouse 129 substrains which could be distinguished by single sequence-length polymorphisms (SSLP). Lefebvre et al. studied six different nemomycin-resistance (neo) gene insertions following selection with high doses of the drug G418. They found that in all cases homozygous cells exhibited extensive LOH, even at markers 16-66 cM from the neo insertion site. The mechanism of LOH therefore appears to involve chromosome loss and duplication, generating regions of uniparental disomy (UDP). Such UDP may affect the expression of imprinted genes on the duplicated chromosome. These observations may ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies