Unraveling H7N9’s History

An analysis of stored samples shows that H7N9 precursor H9N2, a virus widespread in chickens, has shown increased fitness in recent years.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, GAVIN SCHAEFERThe avian influenza virus H9N2, which helped give rise to the deadly H7N9, evolved to become increasingly infectious in chickens in the years leading up to H7N9’s emergence, according to a paper published yesterday (December 29) in PNAS. H9N2 has been circulating on chicken farms in China since 1994. In recent years, the virus recombined in poultry markets with H7 and N9 viruses that had been passed from wild birds to domestic ducks. The resulting H7N9 flu virus jumped to humans in 2013, and by October 2014 had killed 175 of the 453 people it had infected, according to the World Health Organization. This latest viral analysis sheds light on the genetic changes to H9N2 that may have made H7N9’s emergence possible.

“[The] study reveals the increased H9N2 prevalence in poultry farms in China, due to the emergence of a more infectious and antigenically distinct H9N2 genotype,” Tommy Tsan-Yuk Lam of the University of Hong Kong’s School of Public Health, who was not involved in the study, wrote in an e-mail to The Scientist. “This might partly explain by H7N9 virus chose the H9N2 virus to reassort with.”

“With the combination of vaccine-driven selection and reassortment going on, you got the precursor of the H9N2 that was optimal for complementing H7N9 and going into humans,” said study coauthor Robert Webster of St. Jude Children’s Research Hospital in Memphis, Tennessee.

Webster and his colleagues collaborated with the lab of Jinhua Liu at China Agricultural University in Beijing, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel