Unraveling Protein-Protein Interactions

Courtesy of Adrian Arakaki THERE'S GOLD IN THEM THERE COMPLEXES: Digging up protein-protein interactions with MULTIPROSPECTOR. Using a computer instead of a pipette, Jeffrey Skolnick contemplates the subtle forces that bring proteins together. His first computational forays helped decipher the quaternary structure of proteins--the interactions between subunits in molecules such as tropomyosin. Now Skolnick, executive director of the Buffalo Center of Excellence in Bioinformatics, Buffalo

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Using a computer instead of a pipette, Jeffrey Skolnick contemplates the subtle forces that bring proteins together. His first computational forays helped decipher the quaternary structure of proteins--the interactions between subunits in molecules such as tropomyosin. Now Skolnick, executive director of the Buffalo Center of Excellence in Bioinformatics, Buffalo, NY, works on a far bigger problem: understanding, modeling, and predicting the currently unfathomable rules of etiquette that govern protein alliances inside the cell on a genomic scale. "When you look inside a cell, it's not like you are looking at an isolated individual trapped on a desert island," he says. "It's more like a crowded party on New Year's Eve."

A party of proteins, that is. And understanding what those proteins are doing involves much more than simply reading the guest list. That's because most of the heavy lifting in the cell is performed not by individual proteins, but by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Leslie Pray

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide