Up to Speed on PCR

Real-time PCR Systems Cepheid's Smart Cycler System PCR--a technique so common in today's laboratories that it is easy to forget its revolutionary impact--enables the specific amplification and detection of as little as a single copy of a particular nucleotide sequence. However, PCR has the potential to be used not just for the detection of specific sequences, but also for their quantification, because of the quantitative relationship between the amount of starting target sequence and the amoun

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Real-time PCR Systems


Cepheid's Smart Cycler System
PCR--a technique so common in today's laboratories that it is easy to forget its revolutionary impact--enables the specific amplification and detection of as little as a single copy of a particular nucleotide sequence. However, PCR has the potential to be used not just for the detection of specific sequences, but also for their quantification, because of the quantitative relationship between the amount of starting target sequence and the amount of PCR product at any given cycle that falls within the reaction's exponential range.

The theory is straightforward, but a number of technical caveats are associated with the use of conventional end-point methodologies for quantitative PCR.1,2 In these techniques, PCR results are monitored after a given number of cycles, by which point factors such as limiting reagent concentrations and side reactions may have played a significant role in affecting final product concentration. Quantitative competitive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Deborah Fitzgerald

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours