Virology

Edited by: Stephen P. Hoffert B.J. Doranz, J. Rucker, Y. Yi, R.J. Smyth, M. Samson, S.C. Peiper, M. Parmentier, R.G. Collman, R.W. Doms, "A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors," Cell, 85:1149-58, 1996. (Cited in more than 230 publications through November 1997) Comments by Benjamin J. Doranz, Department of Pathology and Laboratory Medicine, University of Pennsylvania While the cell surface protein recep

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Edited by: Stephen P. Hoffert
B.J. Doranz, J. Rucker, Y. Yi, R.J. Smyth, M. Samson, S.C. Peiper, M. Parmentier, R.G. Collman, R.W. Doms, "A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors," Cell, 85:1149-58, 1996. (Cited in more than 230 publications through November 1997)

Comments by Benjamin J. Doranz, Department of Pathology and Laboratory Medicine, University of Pennsylvania

While the cell surface protein receptor CD4 has been identified as the primary receptor for HIV, additional molecules, called coreceptors, are required for the virus to enter and infect a cell. Studies over the past decade have demonstrated that these coreceptors also determine the types of viral strains responsible for person-to-person transmission and the rate of onset of AIDS. For example, cells with the receptor CD4 typically are the target of T-tropic but not M-tropic HIV. T-tropic viruses emerge gradually in HIV-positive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research