Weapons lab to develop Celera's new supercomputer

that's what's in Craig Venter's mind. Sandia, the US nuclear weapons lab, will make the first step towards his dream, along with Celera and Compaq.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

LONDON Craig Venter, the CEO of Celera Genomics — which is on the verge of publishing the sequence of the human genome — has signed an agreement with Sandia National Laboratory in the US to develop the most powerful computer in the world within four years — and it'll be used for biology.

At the same time, Sandia will be working on a similar machine to simulate the full three-dimensional impact of a nuclear weapons explosion, due for delivery to the US government by 2004. Sandia National Laboratory is a US Department of Energy laboratory, owned by the DoE but operated by the Sandia corporation. It is one of the three US weapons laboratories using supercomputers for the government's 'stockpile stewardship programme', which ensures the safety and reliability of the US nuclear stockpile in the absence of nuclear testing.

"The assembly of the human genome last June took 20,000 hours ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Robert Walgate

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo