Why do Christmas trees survive?

A new report shows conifers circumvent their circulation handicap using highly efficient valves

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The secret to the success of conifers—which include the planet's tallest and oldest trees--lies on their highly efficient valves that let water flow through simple conduits as easily as in the more complex angiosperm conduit system, researchers report in this week's Science.

In conifers, water flows upward through short, single-celled tracheids. In angiosperms, in contrast, the pipes consist of longer, multicellular conduits called vessels. Both systems have connecting pits—or valves—concentrated at the end-walls of the conduits. In conifers, water has to cross many more valves, suggesting that they may have higher flow resistance than angiosperms. However, the researchers found exactly the opposite. They showed that conifers apparently compensate for their structural handicaps because they have evolved pits that have much lower resistance than the average angiosperm—59 times lower, in fact.

"When you compare a conifer tracheid with an angiosperm vessel," explained study author John S. Sperry of the University of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Graciela Flores

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide