Worms reveal intron insights

Irish researchers have discovered 122 novel introns that appeared in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae since the two species diverged 80 to 120 million years ago, shedding light on how new introns arise and are subsequently spread among genes. The genomes of both worms contain roughly 100,000 introns, of which more than 6000 are unique to one species or the other. Kenneth Wolfe and Avril Coghlan identified 81 new introns in C. elegans and 41 new introns in C. brig

Written byNicole Johnston
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Irish researchers have discovered 122 novel introns that appeared in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae since the two species diverged 80 to 120 million years ago, shedding light on how new introns arise and are subsequently spread among genes.

The genomes of both worms contain roughly 100,000 introns, of which more than 6000 are unique to one species or the other. Kenneth Wolfe and Avril Coghlan identified 81 new introns in C. elegans and 41 new introns in C. briggsae. Of these, 13 are found in genes implicated in premRNA processing, the authors report in the June 28 PNAS early online edition.

"We used BLAST [Basic Local Alignment Search Tool] to identify orthologous genes across all the species (animal and nematode), and by comparison of all genes, we were able to find intron sites present in one of the nematodes, but absent in all other species," Wolfe, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control