Written in Blood

A tour of evolving strategies for identifying circulating disease biomarkers

Written byJyoti Madhusoodanan
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© LIYA GRAPHICS/SHUTTERSTOCK.COMBlood is the only tissue that makes contact with every organ in the body. Theoretically, probing the DNA, RNA, vesicles, and cellular debris it carries could help diagnose or monitor conditions from placental disorders to Alzheimer’s disease.

The first application of this approach was prenatal genetic screening—which analyzes fragments of fetal DNA in an expectant mother’s blood—available to clinicians since October 2011. So far, these tests have largely focused on identifying chromosomal abnormalities such as Down syndrome. But expanding their utility to monitoring other circulating biomarkers, such as RNA and the contents of membrane-bound microvesicles and exosomes, is on the rise.

These blood-borne information sources are distinct from one another in several ways. Exosomes, which measure 30 to 100 nm in diameter, are actively secreted by most of the body’s cells and are loaded with proteins, regulatory microRNAs, fragments of DNA, and other metabolites that can provide a snapshot of the inner workings of the tissue they come from. Long regarded as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH