Yeast Pushes the Proteomic Envelope

NETWORKED: (A) Effects of the gal4D+gal perturbation are superimposed on a gene interaction network… Click for larger version (92K) Large-scale biology once conjured images of brute-force genetic screens resulting in collections of mutants. More recently, it has meant genome sequencing on unprecedented scales. But today, as this issue's Hot Papers demonstrate, the leading edge in large-scale biology is proteomics. As in the large-scale efforts of the past, researchers rely on simp

Written byMignon Fogarty
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Large-scale biology once conjured images of brute-force genetic screens resulting in collections of mutants. More recently, it has meant genome sequencing on unprecedented scales. But today, as this issue's Hot Papers demonstrate, the leading edge in large-scale biology is proteomics. As in the large-scale efforts of the past, researchers rely on simple model organisms to develop their methods. In the proteomics push, brewer's yeast, Saccharomyces cerevisiae, is creating yet another mold.

"[It has been] a huge leg up to have [the yeast genome] available for the last seven years," says John Yates III, a professor at The Scripps Research Institute in La Jolla, Calif. "The genome itself is relatively simple ... and gene prediction is pretty accurate ... people have made reagents where every yeast protein is fused to other domains like GST [glutathione S-transferase] and GFP [green fluorescent protein] ... and now the deletion set is available." Yates says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies