19th Century Experiments Explained How Trees Lift Water

A maple branch and shattered equipment led to the cohesion-tension theory, the counterintuitive claim that water’s movement against gravity involves no action by trees.

Written byBen Andrew Henry
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

HEAVY LIFTING: Among the theories put forth by 19th-century scientists to explain the movement of water up a tree was the idea that pressure gradients inside leaves sucked water upward. Others insisted cellular conduits must function like pumps. Dixon and Joly, in 1895, discredited both of those proposals. They watched a branch move water against triple the normal atmospheric pressure and posited that tensile properties of water enable trees to lift the fluid without exerting any effort whatsoever. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY BThe uppermost branches of a tree might sway several hundred feet in the air, yet they will receive a constant supply of water sucked out of the soil below. In the late 19th century, the world’s botanists were mired in fierce debate over this astonishing hydraulic feat, divided over whether and how trees expended energy to lift water against the force of gravity.

While theories and counter-theories flew, two Irish scientists, one of them a renowned physicist named John Joly and the other a young botanist named Henry Dixon, decided to test the strength of a tree’s water-lifting capabilities.

Inside of a tree, water courses from root to leaf through tiny conduits collectively called xylem, and almost all water not consumed by cellular processes evaporates, or transpires, through pores on the undersides of leaves. In a paper published in 1895 (Philos Trans R Soc B, 186:563-76), Dixon and Joly reported the results of an experiment to push back against that upward flow.

The pair encased a maple branch in a thick glass tube, sealed except for the end of the branch protruding down into a vial of water. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform