A Brain-to-Brain Interface for Rats

Sensory and motor information can be transferred directly between the brains of rats, but some scientists doubt the proclaimed implication of an “organic computer.”

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

KATIE ZHUANG, NICOLELIS LAB, DUKE UNIVERSITYResearchers have electronically linked the brains of pairs of rats, enabling the animals to communicate directly via implanted microelectrode arrays to solve simple behavioral problems, according to a study published today (February 28) in Scientific Reports.

The authors of the study claim the achievement is the first of its kind, and could lead to the linking of multiple animal brains to form the first “organic computer” through which multiple animals could exchange, store, and process sensory and motor information.

But neuroscientists in the field of brain-machine interfaces (BMIs) told The Scientist that the study is actually a combination two methods demonstrated several times before—namely, recording and decoding information from neural networks and using extracted neural firing patterns to stimulate external devices or muscles of the body.

Critics also pointed out several methodological flaws, including the lack of adequate controls, and cautioned that claims about enabling “organic computing” are far-fetched at best.

“[The researchers] have made numerous important contributions to the field ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development