A Room with a View

Live-cell imaging forces cells to perform in an unnatural environment, but with the right chamber, you can keep them warm and comfortable.

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

NEXT TO NORMAL: Living cells, such as the CHO-K1 (Chinese Hamster Ovary) cells pictured here, can answer many questions about biology—but only if they’re behaving normally.COURTESY OF CLAIRE M. BROWN, DIRECTOR OF THE MCGILL UNIVERSITY LIFE SCIENCES COMPLEX IMAGING FACILITYCells are at their most natural in a warm, moist, dark environment. Put them in the spotlight on the microscope stage, and they may wither like an ingénue paralyzed by stage fright.
You can’t get rid of the spotlight if you hope to image live cells, but by carefully managing temperature, pH, and humidity, you can make your stars as comfortable as possible—ensuring their onstage chemistry and activities are the same as in the privacy of the incubator.

“Environmental control is one of the most important aspects of live-cell imaging,” says David Spector of Cold Spring Harbor Laboratory in New York, who co-edited the Laboratory’s manual on live-cell imaging. And it’s one with a high payoff, he adds—“A movie is worth a million words.”

If the temperature is off by just a couple of degrees, you aren’t looking at healthy tissues. Cell division ceases, for example, and embryo heartbeats stall. “Cells are used to a pretty controlled environment in vivo,” says Claire Brown, who runs an imaging facility at McGill University in Montreal. “If they’re not in that kind of controlled environment, you don’t know if you’re looking at artifacts.” Mammalian tissues prefer 37 °C, of course, but some control systems can also ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH