A Root Cause of Parkinson’s

Misfolded α-synuclein proteins promote the spread of Parkinson’s pathology in mouse brains.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Alpha-synuclein aggregates (red) in the mouse brain.Kelvin LukAggregates of misfolded α-synuclein proteins are not just hallmarks of Parkinson’s disease, they actually initiate pathology, according to a report out today (November 15) in Science. A single injection of the aggregated proteins, known as Lewy bodies, into the brains of healthy mice caused the propagation of such aggregates across networks of brain cells as well as the destruction of dopaminergic neurons, a key feature of Parkinson’s disease.

“There had been this [question] with the Lewy bodies as to whether they were sort of tomb-stone evidence of the disease occurring, or were more involved in the process,” said Gary Miller, a professor of neurology at Emory University in Atlanta, Georgia, who was not involved in the study. “What this shows is that they are clearly part of the process.”

Parkinson’s disease is one of a number of neurodegenerative conditions, including Alzheimer’s and prion diseases, that are characterized by the accumulation of protein aggregates in the brain, Miller explained. In prion diseases, misfolded proteins recruit and misfold more of the same protein, which in turn recruit and misfold additional proteins, and so on. “People suspected something similar might be occurring with α-synuclein in Parkinson’s,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel