An Invasive Midge Could Wreak Havoc on Antarctica

The insects have already transformed parts of Signy Island in the South Atlantic Ocean and could drastically change Antarctic ecosystems if introduced by humans.

Written byCarolyn Wilke
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Signy Island Research Station, Antarctica
© JESAMINE BARTLETT

If a tiny, flightless midge establishes itself on mainland Antarctica, it could unleash outsized changes on the continent’s biodiversity, researchers from the University of Birmingham and British Antarctic Survey warned today (December 19) at the annual meeting of the British Ecological Society. The scientists reached this conclusion by studying the midge’s biology and its transformation of peat moss banks on Signy Island, where it has become an invasive species, about 600 km from the Antarctic Peninsula.

“It’s a really exquisite study,” says Helen Roy, a community ecologist at Centre for Ecology and Hydrology in the UK, who was not part of the work. She notes that the researchers meticulously amassed evidence of the invasive midge’s impact, which can be extremely difficult to do in more complex ecosystems. “It’s really exciting to see that not only have they been tracking the spread of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH