Another Kind of Antigen

The discovery that lipids can serve as antigens first stunned the immunological community a decade ago.

Written byJill Adams
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

The human CD1b groove is composed of four pockets – A', C', F', and T'. Here the two alkyl chains (C16 and C18) of phosphotidylinositol lie in the A' (red) and C' (yellow) pockets, respectively. Two C16 molecules lie in the T' tunnel (violet) and the inositol ring (dark green) protudes from the groove and lies on the predicted region for T-cell receptor binding. (From D.B. Moody, S.A. Procelli, Nat Rev Immunol, 3:11–22, 2003.)

The discovery that lipids can serve as antigens first stunned the immunological community a decade ago. But following the initial shock that floppy, hydrophobic hydrocarbon chains could stir a T-lymphocyte reaction with the same specificity as the peptides presented by conventional major histocompatibility complex (MHC) molecules, researchers hunkered down to determine the new mechanisms.

Now the process and the cast of players, including presentation molecules, loading molecules, and previously undescribed populations of T lymphocytes, are raising ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH