Anti-Malarial Mosquitoes?

Artificially induced bacterial infections in mosquitoes could reduce the spread of malaria-causing parasites.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Anopheles stephensiWIKIMEDIA, RSABBATINICreating a stable, heritable infection of Wolbachia bacteria in Anopheles stephensi mosquitoes diminishes the insects’ chances of transmitting the human malaria-causing parasite, according to a report published today (May 9) in Science. The results suggest that such modified mosquitoes could contribute to malaria prevention strategies in the future.

“It’s a very nice demonstration that Anopheles genus, the most important disease vector mosquitoes, which haven’t previously been shown to naturally support Wolbachia infections, can indeed do so in a stable inherited manner,” said Steven Sinkins, head of the Mosquitoes & Wolbachia group in the Experimental Medicine division at the University of Oxford, UK, who was not involved in the research. “It’s all very exciting stuff in terms of developing new malaria control strategies.”

Wolbachia are parasites or endosymbionts to many insect species, even some mosquitoes, and in certain cases can protect their hosts from infection by other parasites. This protective feature led researchers to wonder whether Wolbachia might be used to prevent the spread of dangerous human parasites in their insect hosts.

Indeed, it ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo