Antibiotics Arms Race Heats Up

© 2002 Wiley Periodicals, Inc.  AT DEATH'S DOOR: Negatively stained Pseu-domonas aeruginosa (A) untreated, (B) treated with amphipathic a helical lytic peptide dia-stereomer (containing both L- and D-amino acids), and (C) treated with with the all L-amino acid peptide. All were treated at 60% of their minimal inhibitory concentration (MIC). At or above the MIC, significant lysis occurs (not shown). (Y. Shai, "Mode of action of membrane active antimicrobial peptides," Biopolymers (Petp

Written byJack Lucentini
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

The next generation of antibiotics could greatly benefit medicine, many researchers say. It also could, some warn, be quite dangerous. Prompting this debate is a class of drugs based on antimicrobial peptides that all animals and plants produce to fight infections. Studies over the past 15 years have found that these peptides, called AMPs, are powerful germ-killers.

But their most remarkable property, proponents say, is that they rarely spur the evolution of resistant microorganisms.1 If true, this could herald a medical breakthrough. Antibiotic-resistant parasites are rendering existing drugs increasingly useless, toughening the biomedical arms race against pathogens. These peptides might turn the tide.

Research on AMPs is growing yearly.2 Such peptides might boost innate infection protections, lessening the need for traditional antibiotics. Under study for indications from acne to sepsis, medical development of AMPs progresses despite setbacks, including some disappointing clinical trial results. (See RAMPs on Trial) But scientists are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research