Antiparalysis Antibodies

The body's response after a spinal cord injury often causes collateral damage, including cell death and ultimately paralysis. German researchers, funded by the Christopher Reeve Paralysis Foundation, report that they have discovered at least one weapon the body may use against itself: the cellular membrane-bound ligand known as CD95L or FasL.In mice, blocking this ligand with antibodies after severing the spinal cord preserves oligodendrocytes and neurons and promotes axonal regeneration.1 This

Written byLaura Wolf
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The body's response after a spinal cord injury often causes collateral damage, including cell death and ultimately paralysis. German researchers, funded by the Christopher Reeve Paralysis Foundation, report that they have discovered at least one weapon the body may use against itself: the cellular membrane-bound ligand known as CD95L or FasL.

In mice, blocking this ligand with antibodies after severing the spinal cord preserves oligodendrocytes and neurons and promotes axonal regeneration.1 This leads to what Ana Martin-Villalba of the German Cancer Research Center, Heidelberg, calls a dramatic difference between untreated and treated mice, "You see a mouse that isn't able to move and you see one that is moving; it's a great functional improvement." The team now seeks the mechanisms by which CD95L works, in particular, identifying which of the cells that express CD95L cause the damage. Prime suspects include T cells migrating to the injury site as well as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies