Arctic Bacteria Thrives at Mars Temps

Researchers discover a microbe living at -15°C, the coldest temperature ever reported for bacterial growth, giving hope to the search for life elsewhere in the cosmos.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Planococcus halocryophilus ORI growing at -15ºC in a 18% salt solutionIMAGE COURTESY OF McGILL UNIVERSITYOne of the things that makes it extremely hard for life to flourish in foreboding places like Mars and the moons of Saturn is the punishing cold. Without the benefit of a blanket-like atmosphere, these celestial bodies have average temperatures well below freezing. Now, researchers from McGill University in Montreal have discovered a bacterium living in the frozen permafrost of the high Arctic that is yielding clues about how extraterrestrial organisms might endure such conditions.

The permafrost bacterium, Planococcus halocryophilus strain Or1, grows and divides at -15°C and can even remain metabolically active at -25°C. McGill environmental microbiologist Lyle Whyte and colleagues isolated the bacteria from Ellesmere Island in the Canadian high Arctic by screening about 200 microbes from the same ecosystem looking for those best adapted to the harsh conditions. They discovered that Planococcus halocryophilus could thrive at -15°C, the lowest temperature yet recorded for bacterial growth. They published their results in the International Society for Microbial Ecology Journal (The ISME Journal) in February.

“We believe that this bacterium lives in very thin veins of very salty water,” said Whyte in a statement. “The salt in the permafrost brine veins keeps the water from freezing at the ambient permafrost ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH