Arsenic-based life debate continues

More than a dozen researchers voice their concerns about a 2010 paper that claims bacteria can use arsenic in place of phosphorus in its DNA and other biomolecules

Written byJessica P. Johnson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
Scientists are questioning the validity of a linkurl:high-profile paper;http://www.the-scientist.com/news/display/57851/ that claimed to have discovered a strain of bacteria from Mono Lake, California, that can use arsenic in place of phosphorus in its DNA and other biomolecules, such as proteins.
Mono Lake, California
Image: Image © 2010 Henry Bortman
The paper, which appeared online in ScienceExpress last December, immediately sparked a hot debate among the scientific community. Now, fifteen researchers have articulated their concerns in the form of eight technical comments published in ScienceExpress last week (May 27), and, for the first time since its publication, the authors of the controversial study have written a formal response to their critics. In general, the criticisms highlight poor experimental techniques and point to more likely explanations for the results than a straightforward replacement of phosphorous with arsenic in biomolecules. "It's like finding a unicorn in your back garden," said linkurl:Rosemary Redfield,;http://www.zoology.ubc.ca/%7Eredfield/whoRRedfield.html professor of microbiology at the University of British Columbia and an author of one of the eight published comments. "The chances of it being an actual unicorn are small, but if the experiments had been really well done, then they would have been convincing. In fact, the experiments were quite badly done. It's like having a blurry picture of the unicorn. It's unlikely that it's actually a unicorn." Specifically, Redfield takes issue with the DNA extraction protocol, claiming that the genetic material was not purified properly before being tested for arsenic content. Furthermore, the supposedly phosphate-free growth medium on which the bacteria were cultured actually did contain phosphate, the phosphorus-based molecule of DNA backbones, which, Redfield argued, the bacteria may have been using to survive. To be absolutely sure that the bacteria were indeed using arsenate (the arsenic equivalent of phosphate) as the authors claimed, she said, the strain must be cultured without any phosphate. linkurl:Felisa Wolfe-Simon,;http://www.ironlisa.com/ a fellow at NASA's Astrobiology Institute and lead author on the original study, and her colleagues defended their DNA purification techniques, and said that they were transparent in revealing the presence of small quantities of phosphate in the medium. But, she argued, the low levels were not enough to sustain growth, as supported by lack of growth in control cultures in media that contained similar amounts of phosphate but no arsenate. But linkurl:James Cotner,;http://www.cbs.umn.edu/eeb/faculty/CotnerJames/ environmental microbiologist at the University of Minnesota and one of the published commenters, contends that the authors overestimate the minimum amount of phosphorous required for cell survival, noting that many species of bacteria naturally survive on the low levels present in the study.Furthermore, researchers argue that there are simpler possible explanations for why the bacteria cultured with arsenate survived and grew. linkurl:Patricia Foster,;http://www.indiana.edu/%7Ebioweb/faculty/directory/profile.php?person=plfoster professor of biology at Indiana University, said it's possible that the bacterial strain, called GFAJ-1, can only bring phosphate into its cells when it is exposed to a stimulant such as arsenate. Therefore, the control cultures don't prove that GFAJ-1 grows by incorporating arsenate into its DNA, just that arsenate needs to be present in order for the bacteria to grow. She also said that if the cells were actively growing and incorporating arsenate into their DNA, then their DNA should have contained a higher percentage of arsenic than the researchers found. Much of the skepticism stems from the longstanding belief that arsenate is extremely unstable. In his comment, linkurl:Steven Benner,;http://www.ffame.org/people/sbenner.html distinguished fellow at the Foundation for Applied Molecular Evolution and another comment author, calculated that each arsenate linkage inside a hypothetical arseno-DNA molecule would hydrolyze (degrade) after only 1 minute in the environment of Mono Lake while phosphate-DNA can survive approximately 30 million years. Though the specific criticisms vary, the sentiment is clear -- more research is needed to conclusively demonstrate that the bacteria actually incorporate arsenic into their biomolecules. "The experiments weren't done to the standards of a controversial issue," said Cotner. Wolfe-Simon and her colleagues plan to continue follow up experiments, and though they have new data on the organism, Science declined to publish it with the authors' response to comments. They have also made GFAJ-1 available for study by other labs. "We weren't particularly happy with all of the hoopla," said Wolfe-Simon. "But you have to embrace your critics. It gives you the opportunity to be more scholarly."
**__Related stories:__***linkurl:Arsenic supports life?;http://www.the-scientist.com/news/display/57851/
[2nd December 2010]*linkurl:Elemental Shortage;http://www.the-scientist.com/2010/11/1/46/1/
[November 2010]*linkurl:A matter of chow;http://www.the-scientist.com/article/display/55461/
[March 2009]*linkurl:Arsenic and old...photosynthesis?;http://www.the-scientist.com/blog/display/54930/
[14th August 2008]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies