Artificial Blood Is Patient-Ready

In the midst of news that engineered organs are being implanted into animals and people, researchers announce the creation of artificial blood for transplant.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, ROB PONGSAJAPANA new source of blood could be just around the corner: red blood cells grown from fibroblasts that have been reprogrammed into mature red blood cells in the lab. The blood, developed by researchers at the University of Edinburgh and the Scottish National Blood Transfusion Service (SNBTS), would be Type O negative, also known as universal donor blood, which currently comprises just 7 percent of the blood donor pool.

“We have made red blood cells that are fit to go in a person’s body,” project leader Marc Turner, medical director at SNBTS, told Forbes. “Before now, we haven’t really had that.”

The blood is created by dedifferentiating fibroblasts from an adult donor and reprogramming them into induced pluripotent stem cells (iPSCs), which are then cultured in a bone-marrow-like environment for a month. Blood cells are then extracted from the cell culture. If the technique can be scaled up to industrial levels (which is no trivial task), beyond potentially supplying an endless supply of life-giving blood, the artificial blood would consist entirely of young, healthy, and infection-free cells, avoiding the issues of pathogen contamination that have in the past plagued the donor blood supply.

“Although ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH