Bacteria Boost Vaccine Effectiveness

Researchers are looking to microbes to improve immune responses to a wide range of vaccines.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Escherichia coli bacteria.Wikimedia, Eric Erbe and Christopher Pooley of USDA.Vaccines were created to protect us from pathogens ranging from influenza and measles to smallpox, polio, and diphtheria. But vaccines to some pathogens—like HIV and the herpes simplex virus (HSV)—have repeatedly failed in clinical trials. In the lone successful HIV vaccine trial to date, the vaccine only provided slight protection over the placebo. And GlaxoSmithKline (GSK) reported last year that its promising HSV2 vaccine against genital herpes sputtered in a large, late-stage trial.

Most vaccines provide the immune system with key pathogen-derived molecules to help it later recognize and attack the same intruder. But many of the molecules are, by themselves, “not really capable of provoking strong immune responses,” explained Dennis Klinman, an immunologist at the National Cancer Institute.

One way to boost the effectiveness of a vaccine is to include adjuvants—extra ingredients that prompt the immune system to take notice and elicit protection. The most commonly used adjuvants, first approved for human use almost 80 years ago, are aluminum-based salts (alum salts), usually aluminum hydroxide or aluminum phosphate. But alum salts only effectively rouse certain types of immune cells. T cells that recognize and kill infect cells—important in clearing infections—are not well stimulated by alum.

Now, scientists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours