Bacterium Blocks Zika’s Spread

Infecting mosquitoes with Wolbachia greatly reduces the insects’ abilities to transmit the virus.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wolbachia bacteriumWIKIMEDIA, SCOTT O’NEILLA bacterium known to prevent the spread of dengue and other viruses has now been shown to block transmission of Zika. Aedes aegypti mosquitoes carrying Wolbachia bacteria were highly resistant to Zika virus infection, and were unable to transmit the virus via their saliva, researchers in Brazil reported in a study published today (May 4) in Cell Host & Microbe. The findings highlight a possible mechanism for fighting the current primary viral vector in the ongoing Zika outbreak.

“It’s an exciting and encouraging study,” said Stephen Dobson, an entomologist at the University of Kentucky who studies A. aegypti biology but was not involved with the work. “To my knowledge, this is first study showing interference of Wolbachia and Zika transmission,” Dobson told The Scientist.

The Wolbachia bacterium is naturally found in at least 40 percent of all insect species, and while it’s not normally present in A. aegypti mosquitoes, it can be introduced to them. The bacterium has been shown to block transmission of dengue and chikungunya viruses, as well as the malaria parasite Plasmodium. Wolbachia is not known to infect people.

“The idea is to replace the population of [non-Wolbachia–infected] mosquitoes in a determined area” with those carrying the bacterium, said study ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research