One more genomewide linkage map, this for a fish called the three-spined stickleback, was announced late last year to not much fanfare.1 But rather than just another stride in the march of genomics, the accomplishment heralded a new way to approach a question that has stumped evolutionary biologists for decades: What is the architecture of genetic change? The model organisms for which linkage maps have been created are often bred in the laboratory to express certain phenotypes, and they can reveal only so much about the structures that give rise to phenotypic diversity. What has been lacking is a system for studying the genetics of adaptation in the wild.

"The whole notion of the stickleback work was to get out of the mode or trap of betting on a candidate gene, and then doing a lot of work to see if you're right," notes the team's leader, Stanford University...

Interested in reading more?

Magaizne Cover

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!