bit.bio's new Huntington's disease human cell model, for in vitro research and drug discovery

bit.bio’s new ioGlutamatergic Neurons HTT50CAG/WT provide a human, cell-based, in vitro model of Huntington’s Disease (HD) that accurately reflects the disease genotype. Offering industry-leading consistency and scalability, this first product from the new ioDisease Model portfolio has been developed to support key applications within drug discovery including target identification and high-throughput screening.

Written bybit.bio
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The life sciences industry is challenged by a lack of reliable, reproducible cell models that generate translatable, reflective, data of actual human disease. ioGlutamatergic Neurons HTT50CAGWTaims to provide a viable solution for HD. CRISPR/Cas9 gene editing has been used to introduce an abnormal expansion of 50 CAG repeats into the first exon of the Huntingtin gene within the wild type ioGlutamatergic Neurons. These highly characterised iPSC-derived glutamatergic neurons accurately represent the disease genotypein vitro. The engineered cells rapidly mature into functional excitatory neurons that consistently form complex neuronal structures and express typical biomarkers in as little as 11 days.

ioGlutamatergic Neurons HTT50CAGWTprovide batch-to-batch consistency at a scale of billions of cells, forming a reproducible model enabled by opti-oxTM precision reprogramming. In addition, bit.bio’s wild type ioGlutamatergic Neurons can be used as a genetically matched control for the ioGlutamatergic Neurons HTT50CAG/WT disease model, offering a physiologically-relevant isogenic pairing with which to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH