Blind Mice Regain Vision

A combination of visual stimulation and chemical growth promotion leads damaged retinal nerves to regenerate in mice.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mouse eyeWIKIMEDIA, VENTUS55Scientists have long known that the mammalian central nervous system (CNS) has a limited capacity to regenerate. But in a new study, researchers from Stanford University have shown that combining visual stimulation and chemical activation of the mammalian target of rapamycin (mTOR) led retinal ganglion cells in blind mice to regenerate, restoring partial vision. Further, the regenerated axons reconnected to their correct targets in the brain, the researchers reported today (July 11) in Nature Neuroscience.

This approach “offers a lot of hope, because it’s really the best regeneration anybody’s seen,” biologist Thomas Reh of the University of Washington in Seattle, who was not involved in the work, told The Scientist. “But it’s still just a small number of axons regenerating . . . and the amount of vision restored is not nearly what we would like to see” in humans, he added.

Unlike the peripheral nervous system, the brains and spinal cords of mammals do not readily regenerate after injury. Secretion of proteins from myelin, buildup of scar tissue, and reduced production of growth factors are all thought to play a role in preventing regrowth of axons in the CNS. Scientists had previously succeeded in partially regenerating murine retinal axons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours