Blind Mice Regain Vision

A combination of visual stimulation and chemical growth promotion leads damaged retinal nerves to regenerate in mice.

Written byTanya Lewis
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mouse eyeWIKIMEDIA, VENTUS55Scientists have long known that the mammalian central nervous system (CNS) has a limited capacity to regenerate. But in a new study, researchers from Stanford University have shown that combining visual stimulation and chemical activation of the mammalian target of rapamycin (mTOR) led retinal ganglion cells in blind mice to regenerate, restoring partial vision. Further, the regenerated axons reconnected to their correct targets in the brain, the researchers reported today (July 11) in Nature Neuroscience.

This approach “offers a lot of hope, because it’s really the best regeneration anybody’s seen,” biologist Thomas Reh of the University of Washington in Seattle, who was not involved in the work, told The Scientist. “But it’s still just a small number of axons regenerating . . . and the amount of vision restored is not nearly what we would like to see” in humans, he added.

Unlike the peripheral nervous system, the brains and spinal cords of mammals do not readily regenerate after injury. Secretion of proteins from myelin, buildup of scar tissue, and reduced production of growth factors are all thought to play a role in preventing regrowth of axons in the CNS. Scientists had previously succeeded in partially regenerating murine retinal axons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies