Brain-Machine Interface Training Triggers Recovery

Researchers studying the use of neural prosthetics in paralyzed patients describe the approach’s therapeutic potential.

Written byBob Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Hypothesis for mechanism of neurological improvement in spinal cord injury patientsA.R.C. DONATI ET AL., SCIENTIFIC REPORTSParaplegic patients who regularly trained with brain-machine interfaces (BMI) to walk in a virtual world or articulate an exoskeleton using their brains have regained some sensation and voluntary muscle control at sites below the spinal cord lesions that caused their paralysis, according to an international team of researchers. The scientists—among them the researchers who enabled a paralyzed man to execute the opening kick of the 2014 World Cup—reported the results of an eight-person trial in Scientific Reports today (August 11).

“Nobody ever imagined that one day we would be talking about the possibility of using brain-machine interfaces to induce partial neurological recovery in patients who have been diagnosed as having complete spinal cord injury,” study coauthor Miguel Nicolelis of the Duke University Medical Center told reporters during a conference call.

Nicolelis and colleagues had been studying the potential of a BMI-driven exoskeleton to give eight paralyzed people the ability to walk. But as the researchers trained the patients to manipulate either avatars in a virtual reality context or the exoskeleton for around an hour per day, twice a week, they noticed that some voluntary muscle movements and sensation returned to areas below the sites of the participants’ spinal cord lesions. “Our goal was simply to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies