Capturing Complexes

Techniques for analyzing RNA-protein interactions

Written byNicholette Zeliadt
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

PROTEIN CLIP: Sites on RNA that interact with an RNA binding protein (RBP) can be identified in complexes fished out of cells using immunoprecipitation, an approach called CLIP. In one variation on this technique, known as PAR-CLIP, cells are incubated with a light-reactive nucleoside analog, 4-thiouridine?(U), that becomes incorporated into RNA. Irradiation with UV light crosslinks RNA-protein complexes, which are then isolated from cell lysates using antibodies. RNA located outside the protein binding pocket is degraded, and the remaining sequence is transcribed to DNA, a process that leads to a characteristic T to C mutation wherever the nucleoside analog incorporates. BRIEFINGS IN FUNCTIONAL GENOMICS, DOI: 10.1093/bfgp/elu020, 2014

RNAs are molecules with a wide-ranging repertory, acting in roles that frequently defy dogma and resist being neatly classified into well-defined categories. Once thought of as simply passive intermediates involved in the translation of genes into proteins, RNAs are now known to exist in myriad forms that perform a variety of important biological functions. They can regulate gene expression or catalyze biochemical reactions, jobs once thought to be carried out only by proteins. The job description of some RNAs can also include defending genomes against foreign nucleic acids and controlling genome organization and stability.

However, one thing that all RNAs are believed to do is function through interactions with proteins. Figuring out the details of these interactions, such as when and where they take place, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies