Chaperones to the Rescue

Image by Joel Ito and P. Michael Conn The first clinical trials to test protein misfolding therapies are so new that researchers haven't yet agreed on a collective name for the compounds being administered. Variously dubbed chemical chaperones, pharmacological chaperones, and pharmacoperones, these small molecules correct the misfolding of proteins that recent research has implicated in a host of diseases, both rare and prevalent. In such "conformational" diseases, misfolded proteins may lose

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

The first clinical trials to test protein misfolding therapies are so new that researchers haven't yet agreed on a collective name for the compounds being administered. Variously dubbed chemical chaperones, pharmacological chaperones, and pharmacoperones, these small molecules correct the misfolding of proteins that recent research has implicated in a host of diseases, both rare and prevalent.

In such "conformational" diseases, misfolded proteins may lose their function and prematurely degrade. Or they can aggregate, resulting in a toxic gain of function that characterizes neurodegenerative conditions. So far, the best therapeutic progress with pharmacological chaperones has been in loss-of-function diseases. Promising results have been achieved in a small clinical trial to treat nephrogenic diabetes insipidus, and recruitment is under way of patients with emphysema and chronic liver disease, conditions that can derive from the same misfolded protein. Encouraging in vitro results have been reported for cystic fibrosis, Fabry disease, hypercholesterolemia, and the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Steve Bunk

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo