Children Receive Bespoke, Lab-Grown Ears

The tissue, grown on a 3-D scaffold and seeded from the kids’ own cells, was transplanted to correct deformities in their cartilage.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

G. SHOU ET AL., EBIOMEDICINE, DOI:10.1016/J.EBIOME.2018.01.011, 2018Five children have had ear reconstruction using lab-grown cartilage that was seeded from their own cells and grown on 3-D-printed molds, researchers reported in EBioMedicine earlier this month (January 12).

“It’s a very exciting approach,” Tessa Hadlock at the Massachusetts Eye and Ear Infirmary in Boston tells New Scientist. “They’ve shown that it is possible to get close to restoring the ear structure.”

The kids were between the ages of 6 and 10 years old and all had microtia, a malformation of the external ear. The researchers took a sample of cartilage from each child, harvested the cartilage-forming cells (called chondrocytes), expanded them, and then grew them on a mold that was build from a CT scan of the patient’s normal ear. The tissue was then implanted into a skin flap to reconstruct the ear, a process that all told took several months.

The first child has been followed for two and a half years, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH