Clues to Lithium’s Mechanism

A study in roundworms hints at how the drug may exert therapeutic effects.

Written byTanya Lewis
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Lithium pelletsWIKIMEDIALithium has long been used to treat bipolar disorder, but its mechanism of action wasn’t well understood. Researchers from MIT have identified a key protein in the brains of roundworms called BPNT-1 that makes the animals less active, they reported today (July 7) in Current Biology. When the researchers inactivated the BPNT-1 gene, the worms ceased to engage in avoidance of harmful bacteria or reactivate from a hibernation state. They saw the same effect when they treated the worms with lithium.

“How lithium acts on the brain has been this great mystery of psychopharmacology,” study coauthor Joshua Meisel of MIT said in a statement. “We think that it’s perfectly reasonable to add BPNT1 onto the list of hypotheses for how lithium is affecting the brain,” he said, but cautioned against extrapolating the findings to humans.

In a previous study, Meisel and colleagues found that chemosensory “ASJ” neurons enable the roundworm Caenorhabditis elegans to avoid potentially harmful bacteria. Other research has shown that these neurons are also involved in reviving the worms from the “dauer exit”—a period of starvation-induced hibernation—in the presence of food.

The present study suggests that lithium treatment inhibits ASJ neurons by blocking the activity of BPNT-1. This protein dephosphorylates a compound called PAP, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies