Cochlear Implant Gene Therapy

The surgically implanted device can be tweaked to provide short electric bursts that send a nerve-growing gene into local cells, a study on guinea pigs shows.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Cochlear nerve after gene therapyUNIVERSITY OF NEW SOUTH WALES, PINYON & HOUSLEYCochlear implants are among the most successful bionic devices ever developed. Available since the 1970s, they have restored some measure of hearing to more than 300,000 people around the world. Now, scientists from the University of New South Wales have found a way of making the implants even more effective—by turning them into delivery vehicles for genes that promote the growth of dying neurons in the ear. Their work appeared in Science Translational Medicine today (April 23).

Many people lose their hearing when the sound-sensitive hair cells in their cochleas die off. When this happens, the spiral ganglion neurons (SGNs), which send signals from the hair cells to the brain, also start to atrophy.

Cochlear implants stand in for the vanished hair cells and producing electric currents that stimulate the SGNs directly. But these shrunken neurons usually lie some distance away from the implants, on the other side of a bony wall. As a result, it takes strong currents to excite the cells, and they lose the ability to convey information about pitch. People who use cochlear implants can typically process speech, but their hearing falters in noisy environments and they rarely grasp the rich texture of music or tonal languages.

Jeremy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas