Cognitive Neuroscience Lurking in Art

What can neuroscientists learn from the masters and other artists?

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIPEDIA; M.C. ESCHER, "MAGIC MIRROR"Eric Altschuler has been staring at mirrors. Specifically, those of van Eyck, Caravaggio, Parmigianino, Escher, and other painters. The Temple University professor and his colleague V.S. Ramachandran of the University of California, San Diego, are on the hunt for novel ways that artists have presented reflections, as a means of seeking out potentially new modes of therapy.

Ramachandran and Altschuler have pioneered methods of using a mirror to alleviate phantom limb pain and other conditions. A patient sits at the side of the mirror with, say, his right arm reflected in front of the glass. The patient peeks around the corner to view the reflection as if he were looking at his left arm—a setup Ramachandran and Altschuler call the parasagittal reflection.

In their cataloging of mirrors in art, presented as a poster at the Society for Neuroscience (SfN) meeting held in Chicago this week, Altschuler and Ramachandran found that for 500 or more years, painters presented frontal plane reflections (a straight-on view in the mirror). It wasn’t until 1946 that something different—the parasagittal view, in particular—appeared in fine art: in M.C. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH