Collective Robot Behavior

A swarm of more than 1,000 small, puck-shaped robots can assemble into diverse patterns.

Written byJef Akst
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

A close-up of the Kilobot swarmMICHAEL RUBENSTEIN, HARVARD UNIVERSITYA simple set of rules, basic infrared communication, and four “seed robots” that coordinate the group’s behavior is all that’s needed for a flock of 1,024 man-made machines to self-assemble into preprogrammed shapes, such as a star or the letter K. The so-called Kilobots—each roughly the size of a stack of five quarters, propped up on three thin legs—detect the presence of other bots within 10 centimeters of themselves by measuring the strength of their neighbors’ infrared signal. Within 12 hours of introducing the four seed robots to the swarm, the Kilobots have taken on the programmed configuration. The work was published last week (August 14) in Science.

“That is a beautiful accomplishment,” Hod Lipson, a roboticist at Cornell University who was not involved with the work, told Science. “Really getting a thousand robots to perform in sort of perfect synchrony.”

In addition to leading to insights in collective animal behavior, the study’s authors, including Harvard computer scientist Michael Rubenstein, hope that such programmable devices could lead to shape-shifting materials that can take the form of different tools, for example. These future robots would act “like a three-dimensional printer, but instead of printing with plastic filament, you'd be printing with robots that can move themselves,” Rubenstein told Nature.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research