Composite Endpoints in Clinical Trials

There’s a right way and a wrong way to boost the statistical sensitivity of this type of clinical studies.

Written bySarah C.P. Williams
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© BRYAN SATALINOIt’s a moment every clinical researcher dreads: you crunch the numbers for an upcoming trial and realize you’ll need to recruit tens of thousands of participants to show a statistically significant effect for the therapy you’re testing. You don’t see any way to change most of your variables linked to trial size. But what if you change your endpoints?

In recent years, a growing number of clinical trials have used composite endpoints—multiple events all treated as one endpoint—as a way to boost the power of a study so that fewer participants are needed. “Say you’re designing a study to look at heart attacks, and it looks like you’ll need 40,000 patients,” says Joshua Stolker, a cardiologist at Mercy Clinic in Saint Louis. “But if you use a combined endpoint that considers both heart attacks and hospitalizations, suddenly you only need 20,000. Then you add in revascularization surgeries, and you only need 5,000 patients.”

In that hypothetical example, researchers who chose to combine all three outcomes would be testing whether their intervention changed the number of heart attacks patients experienced, the number of hospitalizations, or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research