Constant Evolution

Bacteria growing in an unchanging environment continue to adapt indefinitely.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, BRIAN BAER AND NEERJA HAJELAIn a 2013 Science paper, researchers running the Long-Term Evolution Experiment (LTEE)—a project that has been monitoring 12 flasks of Escherichia coli for almost three decades—predicted that the bacteria would continue to adapt to their never-changing environment forever. Now, two years and 10,000 bacterial generations on, it’s clear that their prediction is holding true. The team’s latest report, published in Proceedings of the Royal Society B today (December 16), shows that the fitness of the bacterial populations is indeed continuing to improve.

“We would certainly expect, in the real world, where environments are more heterogeneous, where populations are coevolving with other populations, that evolution is going to continue,” said ecologist and evolutionary biologist John Thompson of the University of California, Santa Cruz, who did not take part in the study. “But what this [paper] says is that, even in the absence of any external forces . . . evolution is going to be relentless nonetheless.”

In 1988, evolutionary biologist Richard Lenski of Michigan State University initiated the LTEE. His team divided one starter culture of E. coli into 12 separate flasks and, for the last 27 years, those 12 cultures have been kept in identical conditions, being diluted by a factor of 100—to allow for growth—with the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours