Corals Show Genetic Plasticity

Inshore corals thrive in a chaotic ecosystem thanks to dynamic gene-expression regulation, which may help the marine invertebrates better adapt to rising sea surface temperatures.

Written byJoshua A. Krisch
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Porites astreoidesWIKIMEDIA COMMONS, JAMES ST JOHNCompared with their offshore counterparts, corals that dwell close to the shoreline must contend with more-variable temperatures, turbid waters, and increased pollution. But for all the stresses of living inshore, in a November 7 Nature Ecology & Evolution paper researchers reported several genetic advantages. Inshore coral seem better able to adapt gene expression to suit new environments than offshore coral, the authors showed. The study is the first to demonstrate gene expression plasticity in coral, and the results could help researchers better predict how individual species will respond to climate change.

“The inshore coral acquired the ability to dynamically alter their gene expression. They were more responsive to the environment, more willing and able to change,” said coauthor Mikhail Matz, an associate professor of integrative biology at the University of Texas at Austin. “This is the first case we have shown in any [coral] population that adaptation happens at the level of gene expression plasticity.”

Rising sea surface temperatures have already compromised nearly 4,600 square miles of coral, as colorful symbiotic algae flee their reefs and leave behind the bone-white remains of their overheated hosts. A handful of coral species seem to be adapting to rising temperatures but, until now, the genetic underpinnings of that process remained mystery.

“Inshore environments are considered more affected by human ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research