Curbing Alcohol Dependence by Blocking a Neural Network

Researchers short circuit the urge to consume alcohol in rat models of compulsive drinking by shutting down specific neurons wired to the brain’s reward system.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Lab rats that compulsively drink are cured of their addiction by a drug that silences neural networks that strengthened as they became dependent on alcohol.FLICKR, SARAH LAVAL Alcohol dependence involves neural reward networks that are strengthened by the regular consumption of alcohol. Using rat models of compulsive drinking, researchers at The Scripps Research Institute (TSRI) have now shown that they can interfere with those specific networks to curb the behavior. They reported their findings last week (September 7) in The Journal of Neuroscience.

“We can completely reverse alcohol dependence by targeting a network of neurons,” coauthor Olivier George, a TSRI neuroscientist, said in a statement. “It is very challenging to target such a small population of neurons in the brain, but this study helps to increase our knowledge of a part of the brain that is still a mystery,” added coauthor and TSRI postdoc Giordano de Guglielmo.

The researchers used a drug called Daun02 to shut down a specific group of neurons in the amygdalas of rats that drank compulsively. The treated rats stopped imbibing as much, and this behavioral change lasted for several days. “With classic pharmacology we usually observe a 20-40 percent decrease in drinking because the individuals are highly dependent (we model heavy alcoholism),” George ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research