Curbing Alcohol Dependence by Blocking a Neural Network

Researchers short circuit the urge to consume alcohol in rat models of compulsive drinking by shutting down specific neurons wired to the brain’s reward system.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Lab rats that compulsively drink are cured of their addiction by a drug that silences neural networks that strengthened as they became dependent on alcohol.FLICKR, SARAH LAVAL Alcohol dependence involves neural reward networks that are strengthened by the regular consumption of alcohol. Using rat models of compulsive drinking, researchers at The Scripps Research Institute (TSRI) have now shown that they can interfere with those specific networks to curb the behavior. They reported their findings last week (September 7) in The Journal of Neuroscience.

“We can completely reverse alcohol dependence by targeting a network of neurons,” coauthor Olivier George, a TSRI neuroscientist, said in a statement. “It is very challenging to target such a small population of neurons in the brain, but this study helps to increase our knowledge of a part of the brain that is still a mystery,” added coauthor and TSRI postdoc Giordano de Guglielmo.

The researchers used a drug called Daun02 to shut down a specific group of neurons in the amygdalas of rats that drank compulsively. The treated rats stopped imbibing as much, and this behavioral change lasted for several days. “With classic pharmacology we usually observe a 20-40 percent decrease in drinking because the individuals are highly dependent (we model heavy alcoholism),” George ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Bob Grant

    From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit