Detailing Color Vision

Scientists engineer a spectrum of artificial pigments to understand how animals see in color.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WikimediaPetar MiloševicVisual pigments in animal eyes absorb a variety of different wavelengths of light, yet each contains precisely the same chromophore—the light-absorbing part of the molecule. Now, thanks to an elaborate protein-engineering project, scientists in Michigan have revealed how this same chromophore, called retinal, is capable of detecting different colors in different cells of the retina. As a by-product of the study, published today (December 6) in Science, the researchers have also generated a suite of designer pigments, which have a potential spectrum of applications.

“We started this project from a very esoteric standpoint—what is going on in color vision?” said Babak Borhan, professor of synthetic and bio-organic chemistry at Michigan State University, who led the study. “But we’ve completely moved to a different realm now, that of potential applications.” For example, Borhan’s palette of pigments could be used to tag proteins of interest, color specific cell types, and more.

The ability of a chromophore to change the wavelengths it absorbs—a phenomenon known as spectral tuning—has fascinated biologists for decades, said Tom Sakmar, professor of molecular biology and biochemistry at The Rockefeller University in New York. All animals use retinal for color vision, he explained, but retinal’s absorption properties can range from blue wavelengths right through to reds depending on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies