Detecting Bulging DNA

Courtesy of C.C. ChengBulged structures are crucial motifs in the recognition of DNA by nucleic acid-binding proteins, says Chien-Chung Cheng of Academia Sinica, Taipei, Taiwan. So, they're important as potential targets for antiviral drugs. They also are known to be intermediates in the process of frame-shift mutagenesis.But unlike RNA, says Cheng, "it has been difficult to obtain detailed structural information about DNA bulges, because they are relatively unstable." The most common detection

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Courtesy of C.C. Cheng

Bulged structures are crucial motifs in the recognition of DNA by nucleic acid-binding proteins, says Chien-Chung Cheng of Academia Sinica, Taipei, Taiwan. So, they're important as potential targets for antiviral drugs. They also are known to be intermediates in the process of frame-shift mutagenesis.

But unlike RNA, says Cheng, "it has been difficult to obtain detailed structural information about DNA bulges, because they are relatively unstable." The most common detection method, the gel mobility shift assay, has low sensitivity, explains Cheng. Other methods employ reagents that have difficulty distinguishing one secondary structure of single-stranded regions from another.

Cheng and a colleague have developed a method of detecting nucleic acid bulges. The method makes use of metal complexes that are DNA bulge-specific, exhibiting low affinity toward double-stranded DNA and low reactivity toward single-stranded DNA. The method, which was recently awarded US patent 6,770,760, is also quick, says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Ivan Oransky

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit