DNA Bricks

Researchers design and build nanoscale structures out of Lego-like DNA bricks.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Electron microscope image of nanostructuresYonggang KeDNA is often referred to as one of life’s building blocks. Now, researchers are taking that metaphor literally by making bricks out of the genetic material. A report published today (November 29) in Science describes the creation of short, single-strand DNA bricks that self-assemble into pre-designed nanoscale structures, such as geometric shapes, numbers and letters, smiley faces, and more.

“What we have provided is a very robust, simple and general technology for making arbitrary shapes on the nanometer scale with very precise control,” said lead author Peng Yin of the Wyss Institute for Biologically Inspired Engineering at Harvard University.

“It's astounding work,” said Erik Winfree, director of the Molecular Programming Project at the California Institute of Technology, Pasadena, who was not involved in the work. “It demonstrates convincingly that rationally designed 3-D self-assembly can work better than I think anyone previously imagined.”

Nanotechnologists have been using DNA as a building material for many years, explained Kurt Gothelf, director of the Center for DNA Nanotechnology at Aarhus University in Denmark. “The beauty of using DNA is that it is so easy to predict its structure,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo