DNA Bricks

Researchers design and build nanoscale structures out of Lego-like DNA bricks.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Electron microscope image of nanostructuresYonggang KeDNA is often referred to as one of life’s building blocks. Now, researchers are taking that metaphor literally by making bricks out of the genetic material. A report published today (November 29) in Science describes the creation of short, single-strand DNA bricks that self-assemble into pre-designed nanoscale structures, such as geometric shapes, numbers and letters, smiley faces, and more.

“What we have provided is a very robust, simple and general technology for making arbitrary shapes on the nanometer scale with very precise control,” said lead author Peng Yin of the Wyss Institute for Biologically Inspired Engineering at Harvard University.

“It's astounding work,” said Erik Winfree, director of the Molecular Programming Project at the California Institute of Technology, Pasadena, who was not involved in the work. “It demonstrates convincingly that rationally designed 3-D self-assembly can work better than I think anyone previously imagined.”

Nanotechnologists have been using DNA as a building material for many years, explained Kurt Gothelf, director of the Center for DNA Nanotechnology at Aarhus University in Denmark. “The beauty of using DNA is that it is so easy to predict its structure,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide