DNA Machines Inch Forward

Researchers are using DNA to compute, power, and sense.

Written bySabrina Richards
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Wikimedia Commons, M Strong et al.Advances in nanotechnology are paving the way for a variety of “intelligent” nano-devices, from those that seek out and kill cancer cells to microscopic robots that build designer drugs. In the push to create such nano-sized devices, researchers have come to rely on DNA. With just a few bases, DNA may not have the complexity of amino acid-based proteins, but some scientists find this minimalism appealing.

“The rules that govern DNA’s interactions are simple and easy to control,” explained Andrew Turberfield, a nanoscientist at the University of Oxford. “A pairs with T, and C pairs with G, and that’s basically it.” The limited options make DNA-based nanomachines more straightforward to design than protein-based alternatives, he noted, yet they could serve many of the same functions. Indeed, the last decade has seen the development of a dizzying array of DNA-based nanomachines, including DNA walkers, computers, and biosensors.

Furthermore, like protein-based machines, the new technologies rely on the same building blocks that cells use. As such, DNA machines “piggyback on natural cellular processes and work happily with the cell,” said Timothy Lu, a synthetic biologist at the Massachusetts Institute of Technology (MIT), allowing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform