DNA palindromes found in cancer

Study in Nature Genetics finds large inverted repeats in colon and breast tumors

Written byCharles Choi
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

DNA palindromes appear frequently and are widespread in human cancers, and identifying them could help advance the understanding of genomic instability, according to researchers writing in an advanced online publication of Nature Genetics for February 13.

While the scientists did not find similar widespread palindrome formation in four normal cell lines studied, "I anticipate we will identify palindromes on the somatic chromosomes of normal cells that might not have been mapped yet," coauthor Stephen Tapscott of the Fred Hutchinson Cancer Research Center in Seattle told The Scientist.

In 2002, Meng-Chao Yao, also of the Hutchinson Center, and colleagues found the molecular mechanisms for palindrome formation in the protozoan Tetrahymena were conserved in mammalian cells and that it was an initial, rate-limiting step in gene amplification. Given amplification of large genomic regions contributes to tumor progression, the investigators explored what role DNA palindromes—already known to exist on the normal human Y ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH