Don't FRET, gold quantum dots are here

In the world of fluorescent labels, organic dyes are out, and quantum dots (QDs) are in. These nanosize crystals of semiconducting material (typically CdSe) sport a broad excitation profile, strong fluorescence, enviable photostability, and narrow, size-dependent emission spectra. QDs are ideally suited for most multiplexed fluorescence applications, but not for fluorescence resonance energy transfer (FRET).Because different QDs will fluoresce under the same excitation wavelength, they cannot fu

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In the world of fluorescent labels, organic dyes are out, and quantum dots (QDs) are in. These nanosize crystals of semiconducting material (typically CdSe) sport a broad excitation profile, strong fluorescence, enviable photostability, and narrow, size-dependent emission spectra. QDs are ideally suited for most multiplexed fluorescence applications, but not for fluorescence resonance energy transfer (FRET).

Because different QDs will fluoresce under the same excitation wavelength, they cannot function as FRET acceptors. Now, Georgia Tech chemist Robert Dickson and colleagues have developed a new class of QDs that can overcome this limitation. Dickson's QDs contain 5–31 gold atoms in a water-soluble shell and have both discrete absorption and emission characteristics.1 An added bonus is that gold is safer to work with than cadmium. "You don't get gold poisoning," says Dickson, who has also done work with silver QDs.

Shuming Nie, director of cancer nanotechnology at Emory University, Atlanta, says Dickson's metallic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit