Down and Dirty

Diverse plant communities create a disease-fighting "soil genotype."

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Plant diversity was the foundation upon which the ancient Mayan civilization was built. Growing beans, maize, and squash together created healthier crops and dark, fertile earth, and enabled successive generations to rotate crops through the same plots without depleting the soil.

“I always wondered about the underlying mechanisms,” says Alexandre Jousset, from the Georg August University in Göttingen, Germany. “These agricultural practices weren’t used in Europe, and I always wondered about the comparative outcomes.”

This is why Jousset was captivated with the Jena Experiment—a series of biodiverse grassland plots in Germany that have been continuously maintained since 2002, allowing researchers to study the impacts of species richness and diversity on soil fertility. Thanks to Jena data, we know that plant diversity increases microbial activity, and that beneficial bacteria like Pseudomonas fluorescens fight soil-borne plant diseases.

Yet despite these findings, soil cultivation is still more of an art than a science. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amy Coombs

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits