Electric Bursts Reshape the Cornea to Improve Eyesight Without LASIK

A noninvasive approach to correcting misshapen eyeballs could expand treatment options for people with vision problems where LASIK is out of reach.

Written byShelby Bradford, PhD
| 2 min read
Photograph of an up-close shot of a person’s face to focus on their eye, which is looking upward.
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Corrective vision surgeries, like LASIK, improve people’s quality of life. However, this procedure relies upon using a laser to remove layers of tissue from the cornea, increasing costs and recovery times.

A new method to reshape the proteins in this eye tissue could provide an alternative approach to improve people’s eyesight. Researchers used electricity and a shaped lens to remodel the corneas of rabbit eyes ex vivo. They presented the technique at the fall meeting of the American Chemical Society.


The cornea is the outermost layer of the eye, providing overall protection to it. Collagen fibers in the cornea maintain the tissue’s structure and strength.1 Brian Wong, a head and neck surgeon at the University of California, Irvine, was interested in developing less invasive means to modify this collagen in the eye tissues. He thought that if he could disrupt the collagen structure, then he could remold it like plastic. Using electricity, he and his team successfully reshaped resected rabbit ears and eyes, although the eye tissue became opaque.

To explore this process further, the team recruited inorganic chemist and electrochemist Michael Hill at Occidental College. After establishing that their electromechanical reshaping method reformed collagen structure by altering the pH of the tissue, the teams turned to the biggest challenge: reshaping the cornea without turning it opaque.

According to Hill, the first objective was to determine the pH at which the cornea softened and also the point at which it became clouded. He and his team found that the collagen turned malleable at a pH of two, while opacity set it at a pH of about 1.5. “So, we have this tiny, narrow, little window where we have to get the pH profile in order to reshape it, but not make it cloudy,” Hill said.

Continue reading below...

Like this story? Sign up for FREE Newsletter updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

To adjust the pH to reshape the tissue without damaging it, Hill explained that the difficulty lay in being able to reach a pH of two across the whole cornea before the area nearest the electrode plate dropped to the damage-inducing 1.5.

The solution, Hill explained in his talk, was to deliver the electrical dose in bursts. Using modeling, they determined how frequently they needed to deliver a burst and how long they needed to wait for the pH change to diffuse through the tissue.

Currently, the researchers are developing a live animal model to test their new technique, since Hill said an outstanding question is how long these changes last in the tissue. “If it turns out that we can reshape the cornea, as we know we can, but then in a couple of days, it's back to its original place, then it's of really little practical use,” he explained.

If successful, the procedure offers an alternative corneal corrective approach for instances where LASIK is not an available option, such as when a lot of tissue would need to be removed. Additionally, Hill said that the findings offer a new platform to manipulate tissues in a non-invasive approach.

“It's just a paradigm shift in that, instead of having this tissue and carving it and suturing it and mechanically manipulating it, we're thinking about it in terms of the material, and how can we change the mechanical properties of it, from a chemical perspective, to remold it and repurpose it,” Hill said.

Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • Shelby Bradford, PhD

    Shelby is an Assistant Editor at The Scientist. She earned her PhD in immunology and microbial pathogenesis from West Virginia University, where she studied neonatal responses to vaccination. She completed an AAAS Mass Media Fellowship at StateImpact Pennsylvania, and her writing has also appeared in Massive Science. Shelby participated in the 2023 flagship ComSciCon and volunteered with science outreach programs and Carnegie Science Center during graduate school. 

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo