Electric Sensation

Researchers help define the limits of electroreception in a weakly electric fish, showing that this sense may be more akin to touch than vision.

Written bySabrina Richards
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Electroreception, such as that exhibited by South American knifefish, allows animals to navigate, sense prey, and even communicate by generating weak electric fields that reflect off objects in the environment. Scientists have drawn parallels between this unique sense and vision in people. But new research published in the September issue of Journal of Experimental Biology suggests that in contrast to vision, which paints a broad picture of the more distant environment, electroreception in weakly electric fish works over extremely short distances, providing information on the immediate environment much like the human sense of touch.

“[The researchers] combined the measurement of the physical stimuli and how distance and size of objects affect the electric image that’s cast on the surface of the fish,” said Rüdiger Krahe, who investigates the sensory processing of weakly electric fish at McGill University who did not participate in the research. Linking these characteristics to fish behavior, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH