Evidence for organelle origin

Genetic clues point to 'missing links' between hydrogenosomes and mitochondria

Written byCharles Choi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The first genetic evidence of hydrogenosomes—organelles found in some ciliates, trichomonads, and fungi that generate hydrogen and adenosine triphosphate (ATP)—that evolved from mitochondria is reported by Dutch and German researchers in Nature this week.

"Our findings prove the existence of missing links between mitochondria and hydrogenosomes," coauthor Johannes Hackstein of Radboud University Nijmegen in the Netherlands told The Scientist. "This has value in analyzing the evolution of the eukaryotic cell, to help better understand these organelles and possibly mitochondrial dysfunctions."

Hydrogenosomes resemble mitochondria morphologically, but generally lack a genome, hampering clarification of their origin. Considerable debate exists over whether hydrogenosomes evolved from aerobically functioning mitochondria that acquired an anaerobic metabolism or from endosymbionts capable of both aerobic and anaerobic function that mitochondria also descended from.

In 1998, Hackstein and colleagues found preliminary evidence that hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis from cockroach guts might possess genes. In the research ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH